F1® auf AWS
Erkunden Sie mithilfe von Machine Learning, künstlicher Intelligenz und Cloud-Technologien neue, einzigartige und innovative Möglichkeiten für Fans, die Formel 1 zu genießen.
F1® Insights powered by AWS
Time Lost ist die neueste Bildschirmgrafik von F1 Insights, bereitgestellt von AWS. F1 Insights sind eine Reihe von Übertragungsgrafiken, die darauf abzielen, das Fanerlebnis während jeder Grand-Prix-Session zu verändern. Time Lost bietet Fans und Sendern ein klares Bild von den Auswirkungen und Ursachen von Fahrerfehlern. Diese wichtige Erkenntnis wird den Fans in einer TV-Grafik in der F1-Live-Übertragung präsentiert, die nicht nur über die Art eines Fahrerfehlers informiert, sondern auch darüber, wie viel Zeit der Fahrer dadurch verloren hat.
Formel 1®: Unterstützt von AWS
Daten zum Rennen
Jedes F1-Fahrzeug verfügt über 300 Sensoren, die 1,1 Millionen Telemetriedatenpunkte pro Sekunde generieren, welche von den Autos in die Boxen übertragen werden. Diese Echtzeitdaten werden mit über 70 Jahren historischer Renndaten, die auf Amazon S3 gespeichert sind, kombiniert, um reichhaltige Erkenntnisse zu gewinnen, die das Fan-Erlebnis informieren, weiterbilden und bereichern und mehr Einblicke in die Wahl der Rennstrategie bringen, die zu siegreichen Leistungen auf der Strecke führt.
Konkurrenzanalyse
Mittels Datenanalyse kann F1 die Leistung bestimmter Autos, Teams und Fahrer für alle relevanten Parameter vergleichen und eine Rangfolge erstellen, um den Fans visuelle Einblicke zu liefern.
Fahrzeugleistung
Die F1 befasst sich genau mit Aerodynamik, Reifenleistung, Fahrantrieb, Fahrzeugdynamik und Fahrzeugoptimierung, um Einblicke zu liefern, anhand derer Fans die Gesamtleistung des Autos interpretieren können. Die Fahrzeugleistung ist der wichtigste KPI für ein F1-Team. Sie gibt den Fans einen einzigartigen Blick hinter die Kulissen der Formel 1 und veranschaulicht, wie die Teams bei der Fahrzeugentwicklung vor und während der Saison gegeneinander abschneiden.
Schnellster Fahrer
Dieser Einblick nutzt AWS Machine Learning-Technologie, um ein objektives, datengesteuertes Ranking aller F1-Fahrer von 1983 bis zum heutigen Tag zu zeigen. Dafür wird der F1-Autounterschied aus der Gleichung entfernt, um die wichtige Frage zu klären, wer der schnellste Fahrer ist. Datenwissenschaftler der F1 und des Amazon Machine Learning (ML) Solutions Lab haben zum ersten Mal in der Geschichte ein ära-übergreifendes, objektives, komplexes, datengesteuertes Ranking der Fahrergeschwindigkeit erstellt.
Rennstrategie
Durch die Verwendung von Timing-Daten kann die Formel 1 visuelle Einblicke erstellen, die es Fans ermöglichen, auf objektive Weise individuelle Team- und Fahrerleistungen, -strategien und -taktiken zu analysieren, die sich auf das Rennergebnis auswirken. Alternative Strategy ist beispielsweise eine Grafik, die Teams und ihren Fans zeigt, wie sich Rennen entwickelt hätten, wenn sie andere strategische Entscheidungen getroffen hätten.
Generative KI verändert den Sport
Von Startups bis hin zu Sport-Franchise-Unternehmen vertrauen Unternehmen auf AWS, wenn es um Innovationen mit generativer künstlicher Intelligenz geht.
Wie treibt AWS die Formel 1® an?
✔ Transformation des Sports: AWS breites und tiefes Funktionsspektrum und unvergleichliche Innovationsgeschwindigkeit verändert, wie die Formel 1 Daten und Inhalte sammelt, analysiert und einsetzt, um Entscheidungen zu treffen. Mit 300 Sensoren an jedem F1-Rennauto, die über 1,1 Mio. Datenpunkte pro Sekunde von den Autos an die Box senden, ist die Formel 1 ein wirklich datengesteuerter Sport.
✔ Mehr Action auf der Rennstrecke: Mit AWS High Performance Computing war die Formel 1 in der Lage, aerodynamische Simulationen auszuführen, um das Auto der nächsten Generation 70 % schneller zu entwickeln und ein Auto zu schaffen, das den Verlust des Anpressdrucks von 50 % auf 15 % verringert. Dank dieser erheblichen Verringerung hat der verfolgende Fahrer eine bessere Chance, zu überholen, und das bedeutet mehr Kopf-an-Kopf-Action für die Fans.
✔ Fans ansprechen und begeistern: Durch AWS war die Formel 1 in der Lage, Millionen von Autos und an der Rennstrecke übertragene Datenpunkte mit ihren F1 Insights in eine fesselnde Fanerfahrung zu konvertieren.
Einbinden der Fans
F1 Insights powered by AWS transformiert die Fanerfahrung vor, während und nach jedem Rennen. Die F1 nutzt bestimmte Datenpunkte für jeden Einblick, wodurch Fans nachvollziehen können, warum Fahrer gewisse Sekundenentscheidungen treffen und wie Teams Rennstrategien, die sich auf das Rennergebnis auswählen, in Echtzeit entwickeln und umsetzen. Hier sind ein paar Beispiele dafür, wie alles zusammenkommt.
Klicken Sie unten, um zu erweitern
Durch die Verwendung von Timing-Daten kann die Formel 1 visuelle Einblicke erstellen, die es Fans ermöglichen, auf objektive Weise individuelle Team- und Fahrerleistungen, -strategien und -taktiken zu analysieren, die sich auf das Rennergebnis auswirken.
-
Battle Forecast
Battle Forecast wird Rennstreckenverlauf und prognostizierte Fahrergeschwindigkeit verwenden, um vorherzusagen, wie viele Runden es dauert, bis das verfolgende Auto in Reichweite des vor ihm liegenden Autos ist.
-
Pit Strategy Battle
Die Grafik „Pit Strategy Battle“ bietet Fans einen zusätzlichen Einblick dazu, wie in Echtzeit beurteilt werden kann, wie erfolgreich die Strategie jedes Fahrers ist. Fans können leichte Strategieveränderungen verfolgen und die Auswirkung auf das Endergebnis nachvollziehen.
-
Boxenstoppfenster
Geschätzte Boxenstoppfenster basierend auf Reifenzusammensetzung, Rundenzeiten und Verteilung der Autos. Die Zuschauer können nachverfolgen, wie ein Rennen verändert werden kann, basierend auf Renndynamik, einschließlich Rennstrategien anderer Teams, Safety Cars und gelben Flaggen.
-
Vorhergesagte Boxenstoppstrategie
Es werden historische Daten verwendet, um die Rennstrategie während der Einführungsrunde zu berechnen, wobei vorhergesagte Reifen- und Rennstrategien verglichen werden. Durch diesen Einblick können Zuschauer sehen, wann es für einen Fahrer strategisch am besten ist, den nächsten Boxenstopp einzulegen.
Mittels Datenanalyse kann F1 die Leistung bestimmter Autos, Teams und Fahrer für alle relevanten Parameter vergleichen und eine Rangfolge erstellen, um den Fans visuelle Einblicke zu liefern.
-
Autoanalyse/Autoentwicklung
Dieser Einblick zeigt, wie Teams ihre Autos entwickeln, wie schnell sie dabei sind und wie im Laufe der Saison das Ergebnis auf der Rennstrecke aussieht. Das Rennen um die Entwicklung, sowohl während der Saison als auch zwischen den Saisons, ist der wichtigste KPI für ein F1-Team, und hiermit wird ein einzigartiger Einblick in das Innenleben der Formel 1 und wie Teams in diesem Bereich gegeneinander antreten geboten.
-
Car-Performance-Punkte
Dieser Einblick isoliert die Leistung eines einzelnen Autos und ermöglicht es Fans, dessen Leistung mit der anderer Fahrzeuge zu vergleichen. Es werden Bausteine verglichen, die für die Autoleistung wichtig sind, insbesondere Kurvenverhalten, Verhalten auf geraden Strecken und Fahrzeugbalance oder -handling.
-
Driver Performance
Driver Performance zeigt, welche Fahrer ihr Auto im Vergleich zu ihren Teamkollegen und Konkurrenten an die absolute Leistungsgrenze bringen. Berechnet man die Kräfte, die von den Reifen eines Autos während einer Runde erzeugt werden und vergleicht sie mit der maximalen Leistungsfähigkeit des Autos, zeigt dies, wie viel von der potenziellen Leistung des Autos vom Fahrer extrahiert wird. Drei Parameter werden gezeigt, um drei Schlüsselbereiche der Fahrerleistung hervorzuheben, die einen großen Einfluss auf das ultimative Ziel haben – die Rundenzeit: Beschleunigung, Bremsen, Kurven.
-
Saisonsleistung des Fahrers
Dieser Einblick schlüsselt die Fahrerleistung basierend auf den wichtigsten Fahrfähigkeiten auf, indem zahlreiche Daten zu Auswirkung auf das Auto, die Reifen, Verkehr, Kraftstoff, u. a. analysiert werden, um eine bewertete Ausgabe der Performance jedes Fahrers im Laufe der Saison in Bezug auf sieben Hauptmetriken – Qualifikationsrennen, Rennstarts, Rennrunde 1, Renngeschwindigkeit, Reifenmanagement, Boxenstoppfähigkeit des Fahrers und Überholen – zu erhalten. Diese Metriken werden mit einer Skala von 0-10 normalisiert, um eine „Score“-ähnliche Metrik zu liefern, und bieten Zuschauern, Fans und Teams gleichermaßen einen Einblick dazu, wo die Stärken und Schwächen eines bestimmten Fahrers liegen und wie er im Vergleich zu anderen Fahrern abschneidet.
-
Geschwindigkeit beim Qualifying
Dieses F1 Insight Powered by AWS wird Machine Learning und eine analytische Methodik verwenden, wobei Trainingsdaten und historische Verbesserungen von Teams zwischen Samstags- und Sonntagsrennen eingebunden werden.
-
Startanalyse
Die Fans erhalten einen detaillierten Überblick darüber, wie jeder Fahrer in der Lage ist, seine Leistung in der Startphase zu nutzen (oder auch nicht!).
Die F1 befasst sich genau mit Aerodynamik, Reifenleistung, Fahrantrieb, Fahrzeugdynamik und Fahrzeugoptimierung, um Einblicke zu liefern, anhand derer Fans die Gesamtleistung des Autos interpretieren können.
-
Bremsleistung
Braking Performance zeigt, wie der Bremsstil eines Fahrers während eines Kurvenmanövers einen Vorteil beim Verlassen der Kurve bieten kann. Es vergleicht die Bremsstile und die Leistung der Fahrer, indem es misst, wie nah sie sich dem Scheitelpunkt einer Kurve nähern, bevor sie bremsen, und es zeigt, wie das Auto und der Fahrer bei der Kurvenfahrt zusammenarbeiten, wie z. B. die Höchstgeschwindigkeit bei der Annäherung, die Geschwindigkeitsabnahme durch das Bremsen, die eingesetzte Bremskraft und die immensen G-Kräfte, denen die Fahrer während der Kurvenfahrt ausgesetzt sind.
-
Kurvenanalyse
Das ist der wichtigste Performancebereich für ein F1-Auto und liefert einen großartigen Einblick darüber, wie gute Autos im Vergleich zu großartigen Autos abschneiden. Die Kurve wird in 4 Hauptabschnitte unterteilt (Bremsen, Einbiegen, Kurvenmitte und Ausfahrt) und die Performance in den Hauptabschnitten einer Kurve wird mittels Autotelemetriedaten analysiert und verglichen.
-
Ausfahrtgeschwindigkeit
Die Analyse von Kurven, die vom optimalen Brems- und Beschleunigungspunkt in einer bestimmten (und entscheidenden) Kurve abhängt. Das ist der Bereich, in dem der Fahrer am meisten herausholen kann. Dieser Einblick gibt Zuschauern eine detaillierte Übersicht über die Verluste und Gewinne bei Rundenzeiten sowie einen Vergleich zwischen Autos.
-
Reifenleistung
Wir nutzen Autodaten, insbesondere Autogeschwindigkeit, longitudinale und laterale Beschleunigungen und Gyro, um Schräglaufwinkel zu schätzen und daraus für jedes Auto Fahrzeugbalancemodelle abzuleiten. Dadurch erhalten wir eine Ausgabe für Reifenverschleißenergie. (Hinweis: Reifenverschleißenergie ist kein physischer Reifenverschleiß, sondern die Energieübertragung der Reifenkontaktfläche, die über die Straße gleitet.) Das Output gibt uns eine Reifenleistung für jede Kurve, was angibt, wie stark der Reifen in Bezug auf seine Leistungsdauer beansprucht wird.
Beschleunigung der Fan-Erfahrung
Möchten Sie einen Blick unter die Motorhaube werfen und sehen, wie es funktioniert? Erfahren Sie, wie AWS und die Formel 1 mit Amazon SageMaker erstellte Machine Learning-Algorithmen verwenden, die neue Einblicke liefern und für mehr Action auf der Rennstrecke sorgen, und wie die Formel 1 AWS verwendet, um das nächste Rennauto zu entwerfen.